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Abstract 

Functional Data Analysis (FDA) is a statistical analysis tool that allows to analyse time-series data as 

functions. However, despite being successfully applied in several scientific domains, FDA is still rarely 
applied in epidemiology analysis. In this thesis, FDA is applied to analyse the associations of COVID-
19 incidence with mobility and sociodemographic variables in Portugal mainland. The Concurrent Model 
is applied to analyse the association between a functional response variable (COVID-19 incidence) and 
a functional explanatory variable (Google Mobility). The Analysis of Variance Model is applied to assess 
the association between COVID-19 incidence functional data and scalar explanatory variables 
(Sociodemographic Variables). The results enabled to identify some relevant trends in functional data 
curve shapes. The strongest association was found between COVID-19 and Residential mobility, while 
Mobility in Retail and Public Transports also presented significant results. Mobility in Grocery Stores, 
Parks and Workplaces showed weak associations. In addition, the results strength the idea that the lag 
for mobility to have an effect on incidence is around 15 days, as referred in literature. Results also 
suggest that certain sociodemographic conditions influence the spread of COVID-19, such as income 
level, population’s age-structure, density of schools, or prevalent sectors of activity. The techniques 
used here suggest FDA can be considered an additional tool for epidemiological analysis of COVID-19 
incidence that can be replicated for mortality data or other disease or pandemics. The FDA is a broad 
area, so further analysis can be done using other FDA tools. 

Keywords: Functional Data Analysis, COVID-19 Incidence, Google Mobility, Sociodemographic 

Variables, Analysis of Variance Model, Concurrent Model 
 

 

1. INTRODUCTION 

At the end of 2019, several cases of a contagious 
pneumonia were identified in Wuhan, a region of 
China. [1]. Despite the quarantine implemented in 
China, this pneumonia caused several outbreaks 
and spread to most of the countries around the 
world [2]. Laboratory analysis concluded that this 
pneumonia was caused by a novel coronavirus 
(CoV) named 2019-nCoV. The World Health 
Organization (WHO) named the disease 
Coronavirus Disease-2019 (COVID-19), and the 
International Committee on Taxonomy of Viruses 
(ICTV) named this novel coronavirus SARS-CoV-
2. A characteristic of this virus is the existence of 
asymptomatic cases [1], and strategies to contain 
the virus are difficult to implement. In Portugal, 
mobility restrictive measures were used, including 
the closure of certain activities, teleworking, and 
mandatory lockdowns. The objective was to 
reduce the flow of people, reducing the probability 
of infection and consequently delaying the spread 
of the virus. [3], [4].  

However, it is not always possible to know to what 
extent the restrictive measures applied prevent 
the spread of COVID-19. It is necessary to 
understand if these measures are necessary and 
effective. Therefore, open access COVID-19 data 

should be analysed, relate them to other variables 
that may have an influence on the spread of the 
disease, draw conclusions from the results 
obtained. Nowadays, several types of data are 
used to guide governments in health care 
planning. Statistical tools have been applied in 
diverse areas of science, with Multivariate Data 
Analysis (MDA) being the most used approach. 
However, this approach ignores the functional 
behaviour of the generating process that underlies 
the data. Functional Data Analysis (FDA) arises as 
an alternative methodology that has been 
increasingly applied, allowing to model time series 
as functional data. But what is FDA? In FDA, each 
record that comprises the functional data is called 
a functional datum [5]. [6] defines a functional 
datum as a set of measurements along a 
continuum that are considered as a single curve. 
Normally, this continuum is defined as being 
temporal. 

Because this approach considers each curve as a 
single entity, possible correlations between 
repeated measurements are no longer a problem, 
one that persisted in MDA [7]. According to [7], the 
goal of FDA is to transform time series into a 
function that represents the entire data as a single 
observation. Then, concepts from MDA are 
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applied to these data. FDA processes may involve 
several tools [6],[8], including Smoothing, 
Registration, Functional Principal Components 
Analysis (FPCA), Functional Principal Differential 
Analysis or Functional Linear Models. 

 
2. LITERATURE REVIEW 

FDA was used to explore the COVID-19 mortality 
in Italy, and its association with covariates such as 
mobility, and sociodemographic variables. The 
study found that mobility and positivity are 
associated with mortality and identified schools as 
having higher risk of contagion [8]. A study utilized 
FDA methods to investigate the COVID-19 spread 
in the United States, and the results demonstrate 
the effectiveness of stay-at-home orders [9]. FDA 
was applied to model COVID-19 trajectories in 
several countries and showed that a decrease on 
workplace mobility is correlated with reduced 
doubling rates (with a 2-week delay) [10]. 

The incidence of COVID-19 in Italy was analysed 

and was found that the measures implemented 
contributed to reduce the spread of the COVID-19 
[11]. A susceptible-infected-recovered (SIR) 
model was applied to COVID-19 data to calculate 
the weekly transmission rate (β) and the 
association between mobility and these β values 
was analysed. According to the results distancing 
measures are effective in reducing the spread of 
the disease [12]. A study developed an interrupted 
time series study to assess the effectiveness of 
lockdown in reducing confirmed/death cases from 
COVID-19 in China. The results demonstrated 
that the social distancing measures had a positive 
impact in slowing the spread of the disease, and 
that the impact on incidence occurs between 7 to 
17 days after the application of the measures [13]. 
A study described the association between 
transmission and mobility and found evidence that 
mobility patterns correlate with the intensity of 
transmission [4]. 

Other study intended to correlate the evolution of 
the COVID-19 in Portugal to its sociodemographic 
and demographic characteristics. It showed that 
the virus spreads from large urban areas to the 
surroundings. Also, it evidenced that elderly 
people in nursing homes constitute an extremely 
vulnerable part of the population, and immigrants 
have an increasing incidence [14].  A study 
developed the Area Deprivation Index (ADI), to 
rank neighbourhoods by their sociodemographic 
characteristics and evaluate their impact on the 
COVID-19 prevalence in the US. The results 
demonstrate that some neighbourhoods with 
higher ADI (more disadvantaged) presented 
higher COVID-19 prevalence [15]. In other study, 
the association of COVID-19 hospitalizations with 
racial and sociodemographic characteristics was 
analysed. It was observed an association between 
the hospitalization risk and Townsend Deprivation 

Index and income, and that Black and Asian 
people have a higher risk of hospitalization [16]. A 
retrospective cohort study was developed to 
analyse the correlation between the patient 
sociodemographics and COVID-19 health 
outcomes, and it was shown that neighbourhood 
disadvantage, which is closely associated with 
race, is a predictor of poor health outcomes [17]. 

 

3. OBJECTIVES 

Literature review showed that FDA is a relatively 
recent technique in epidemiology fields, and more 
conventional methods are often used instead. 
Therefore, the objective is to use several FDA 
techniques such as smoothing, interpolation and 
functional linear models to analyse the association 
of COVID-19 incidence data with mobility and 
sociodemographic data. The results obtained in 
this work contribute to point out that FDA 
techniques can be considered an additional tool to 
more traditional epidemiological analysis 
contributing to provide new insights about the 
impact of potential risk factors on the spread of 
disease. 

 

4. MATERIAL 

Data used for analysis includes COVID-19 Data, 
Google Mobility Data and Sociodemographic 
Data. These data are provided in CSV (Comma 
Separated Value) or TXT (Text File) formats. Due 
to the specificities of FDA methods, these data 
had to go through pre-processing. 

4.1 COVID-19 Incidence Data 

COVID-19 related data are the focus of this work 
and consists of the daily notification COVID-19 
cases by municipalities (n=278) in Continental 
Portugal. Data is provided by the Direção Geral da 
Saúde, and refers to the period between March 9, 
2020 and February 6, 2021.  

COVID-19 data refers to a set time-series with 
tabular structure where each column corresponds 
to municipality s, each row corresponds to day t, 
and each cell represent daily 7-day cumulative 
incidence rates (Table 1). 

Date m(s=1) … m(s=j) … m(s=M) 

t = 1 rate(t=1, s=1) … rate(t=1, s=j) … rate(t=1, s=M) 

…  …  …  

t = i rate(t=i, s=1) … rate(t=i, s=j) … rate(t=i, s=M) 

…  …  …  

t = T rate(t=T, s=1) … rate(t=T, s=j) … rate(t=T, s=M) 

Table 1- Data structure of incidence data used for functional data analysis 

These data were processed as described in 
Section 5.1 before being correlated with the 
mobility time-series data. 

4.2 GOOGLE Mobility Data 

The Google data used in this work consist of daily 

mobility values in each of the 278 municipalities in 
Portugal mainland. These data is made available 
free by Google for public use and the version used 
here is related to the period of time between 
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March 15, 2020 and February 2, 2021. Most of the 
information detailed in this section is provided by 
[18]. 
The data show movement trends by region, 
across different categories of places. For each 
category in a region, reports show the changes by 
comparing mobility for the report date to the 
baseline day. Here, the baseline day is the median 
value from the 5‑week period Jan 3 – Feb 6, 2020, 
before widespread COVID-19 disruption in 
Europe. For each region-category, the baseline is 
not a single value—but 7 individual values, one for 
each week day. A number is calculated for the 
report date and reported as a positive or negative 
percentage. It shows how visits and length of stay 
at different places change compared to a baseline. 
The mobility data are retrieved from anonymous 
mobile device location information from Android 
users [19] and aggregated by municipality. When 
data doesn't meet quality and/or privacy 
thresholds, a missing data occurs. 6 different 
mobility categories are analysed: Grocery; Parks; 
Stations; Retail; Residential; Workplaces. 

Mobility data consists of time-series with mobility 

values in tabular format where each column is a 
municipality, each row corresponds to day t and 
cell values represent daily mobility values. 

 
Date m(s=1) … m(s=j) … m(s=M) 

t = 1 mob(t=1,s=1) … mob(t=1,s=j) … mob(t=1,s=M) 

…  …  …  

t = i mob(t=i,s=1) … mob(t=i,s=j) … mob(t=i,s=M) 

…  …  …  

t = Tm mob(t=Tm,s=1) … mob(t=Tm,s=j) … mob(t=Tm,s=M) 

Table 2- Data structure of mobile data used for functional data analysis 

 

For confidentiality reasons some data are omitted. 

In these cases, an imputation method was used to 
fill-in the missing values. For analysis of 
relationships with COVID-19 data, a further data-
processing step was conducted, which is 
described in Section 5.1.  

4.3 Sociodemographic Data 

The sociodemographic data analysed covers 
each of the 278 municipalities in Portugal 
mainland. Unlike COVID-19 or GOOGLE data, 
sociodemographic data are not time-series, but 
rather a single value for each municipality (annual 
statistics, from which the most recent year 
available was used). 

These data were collected from Instituto Nacional 

de Estatística (National Statistics) and PORDATA 
(Fundação Francisco Manuel Dos Santos, Open 
Data provider Fundação).  The Deprivation Index, 
which is a relative measure of poverty. computed 
using an European standardized approach [20]., 
was provided by Ribeiro [21], Sociodemographic 
data were transformed into population proportions 
or population densities to reduce the impact of 

different population sizes and allow a comparative 
analysis between municipalities. 

Sociodemographic data was structured in tabular 

format, where rows refers to municipalities and 
columns to sociodemographic variables (Table 3).  

Table 3 - Sociodemographic Variables Description 

To use sociodemographic variables with FDA 
techniques, it was necessary to transform these 
values (proportions or densities) into categorical 
ones by grouping municipalities into tertiles 
(except for one variable, which already grouped 
municipalities into quintiles), to be used as dummy 
variables. 

 

5. METHODOLOGY 

5.1 Pre-Processing 

5.1.1 Stationarity 

For this work, time-series are transformed into 

stationary series. This transformation is only 
carried out for modelling the association between 
COVID-19 and mobility. Stationary time-series are 
time-series whose properties do not depend on 
the time at which they are observed, and they 
have means, variances, and covariances that 
don’t change over time [22], [23]. Non-stationary 
data, generally, are more complicated to be 
modelled [24].  

The first step of this transformation is to submit the 

data to a log transformation. However, the data in 
question contains “zero” values. Instead, a two-
parameter version of the Box-Cox transformation 
was used, which allows for a shift before the data 
is transformed: 

 𝑔(𝑦; 𝜆1, 𝜆2) = {

(𝑦 + 𝜆2)𝜆1 − 1

𝜆1
 𝑤ℎ𝑒𝑛 𝜆1 ≠ 0

log(𝑦 + 𝜆2)         𝑤ℎ𝑒𝑛 𝜆1 = 0

 (1) 

Parameters 𝜆1 and 𝜆2 are estimated using an R 
function called boxcoxfit. 

The second step of the transformation into 
stationary series involves the application of 
differencing. COVID data were subjected to the 
calculation of second differences, and mobility 
data from GOOGLE subjected to the calculation of 
first differences, with a 7-day time lag:  

1st difference: ∆𝑚𝑧𝑡 = (1 − 𝐵)(1 − 𝐵𝑚)𝑧𝑡 (2) 

2nd difference: ∆2
𝑚𝑧𝑡 =  (1 − 𝐵)2(1 − 𝐵𝑚)𝑧𝑡 (3) 

𝑧𝑡 is an observation of the time series at time t, m 

is the time lag, and ∆𝑧𝑡, ∆
2𝑧𝑡 represent the first and 

Variable Description Abbreviation 
Population Density in 
Urban Areas 

Inhabitants / km2 PD 

Deprivation Index 1 to 5 DI 
Youth Population % 0-19 years YP 
Elderly Population % 65+ years EP 
Working Population in 
Primary Sector 

% Working Pop. In Primary 
Sector 

PS 

Working Population in 
Secondary Sector 

% Working Pop. in 
Secondary Sector 

SS 

Working Population in 
Tertiary Sector 

% Working Pop. in Tertiary 
Sector 

TS 

Guaranteed Minimum 
Income 

Proportion of Guaranteed 
Minimum Income 
beneficiaries 

GMI 

Schools Density Schools / Km2 SD 



 
 

 4 

second differences of 𝑧𝑡. In the case of COVID-19 
incidence, the first differences correspond to the 
acceleration in the incidence rate. The second 
differences of Google Mobility data correspond to 
the velocity of mobility variation. 

5.1.2 Imputation (predictive mean matching) 

As said before, Google mobility data contains cells 
with missing data. Here, an imputation method 
called predictive mean matching is applied, using 
the package mice [25]. It allows for discrete 
variables, and is based on real values, providing 
reliability to the estimation. One of the biggest 
advantages of this method is that it is less 
vulnerable to model misspecification, since the 
model is implicit in the data itself. For each missing 
entry, a set of candidate donors is created from all 
complete cases that have predicted values closest 
to the predicted value for the missing entry. One 
donor replaces the missing value. [25]. 

5.1.4 Data Analysis per Wave 

The evolution of the incidence of COVID-19 in 
Portugal during the analysed period is 
characterized by the existence of 3 pandemic 
waves. Considering this, the time series that 
constitute the COVID-19 and Google Mobility data 
were divided in 3 parts, allowing FDA to be applied 
not only to the entire pandemic period, but also to 
each of the waves individually (or combining 
consecutive waves). The individual study of each 
wave reduces the complexity of the results and its 
analysis. The division of the 3 waves was done as 
follows: 

• 1st : March 9, 2020 to July 31, 2020  

• 2nd: October 24, 2020 to December 6, 2020 

• 3rd : December 14, 2020 to February 6, 2020 

 

5.2 FDA 

The first step of the FDA methodology is to build 
functions from the data. The function construction 
process used in this thesis is based on the 
structure proposed in [26]. In this first step the goal 
is to transform time series data into functional 
data. 

The process of constructing a function is based on 
the following expression 

 𝑥(𝑡) = ∑ 𝑐𝑘𝜙𝑘(𝑡) = 𝒄′𝝓(𝑡)

𝐾

𝑘=1

 (4) 
 

To build a function x(t) from the data it is essential 

to define: 

• the functions 𝜙𝑘, called basis functions 

• the coefficients 𝑐𝑘, to construct the 

function 𝑥(𝑡) as a linear combination of 
these coefficients with the basis functions 
𝜙𝑘 

5.2.1 Basis Functions 

The COVID-19 and mobility data is unpredictable 

as they reflect the complex response of 
populations under a pandemic situation, and the 

task of transforming these data into functions that 
allow an accurate analysis is not an easy one. It is 
necessary to use tools that allow the construction 
of curves from any type of data, without giving up 
an adequate level of efficiency from a 
computational point of view. The basis functions 
𝜙𝑘 work as a set of functional building blocks. 
These functions, of which there are several types, 
are linearly combined with coefficients, in order to 
estimate the intended function. 

The expression (4) defines the construction of any 

function 𝑥(𝑡), and is called basis function 
expansion: 

The parameters 𝑐1, 𝑐2, … , 𝑐𝑘 are the coefficients of 
the basis function expansion. In the expression 
𝒄′𝝓(𝑡), 𝑐 refers to the vector of K coefficients and 

𝝓(𝑡) is a vector of length K that contains the basis 
functions. 

In this work, a dataset of 𝑁 time series, 
corresponding to the 𝑁 municipalities of Portugal 

mainland, are transformed into 𝑁 functions. So 𝑁 
functions are required, and the expression (4) is 
replaced by 

 𝑥𝑖(𝑡) = ∑ 𝑐𝑖𝑘𝜙𝑘(𝑡), 𝑖 = 1, … , 𝑁

𝐾

𝑘=1

 (5) 

and in this case matrix notation for (4) becomes 

 𝐱(𝑡) = 𝐂𝝓(𝑡) (6) 

where 𝐱(𝑡) is the vector that contains the 𝑁 

functions 𝑥𝑖(𝑡), and the coefficient matrix 𝐂  
contains all the coefficients. In this work, the 
coefficient matrix 𝐂  is a matrix with 𝑁 rows (one 

row per function 𝑥𝑖(𝑡)) and 𝐾 columns (one 
column per basis function). 

There are several types of basis systems, and 

some of them include Spline series and Fourier 
series, that solve most of the problems in FDA. In 
this work Spline Series were selected to construct 
the basis functions. 

Spline Series 

Splines are polynomials, able to accommodate 

flexible basis functions, allowing therefore to 
estimate any curve feature. In this research, B-
Splines are applied to model time-series data, 
allowing to estimate smoothed curve features 
reflecting the complex response of populations 
under the pandemic situation. 

Break Points and Knots, Order and Degree 

When building a spline basis system, the data is 

divided into subintervals throughout its 
observation interval. This division is carried out 
through the application of break points between 
the intervals. In the break points, knots are placed, 
and each break point has at least one knot. 

Spline functions that define the entire basis 

system are polynomials with a certain degree or 
order. The degree corresponds to the highest 
power of the polynomial, and the order 
corresponds to 𝑑𝑒𝑔𝑟𝑒𝑒 + 1. The purpose of the 
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knots is to define, at each break point, the number 
of matching derivatives between neighbouring 
polynomials. Typically, each break point contains 
only one knot, and the number of matching 
derivatives is 𝑜𝑟𝑑𝑒𝑟 − 2. Thus, any basis system 
with order greater than 2 will have at least one 
derivative matching (1st derivative), and the 
function will have smooth continuous behaviour at 
all break points.  

In conclusion, spline basis systems are defined by 

the break points, the sequence of knots, and the 
degree or order of the polynomials. Increasing the 
order/degree of the spline basis functions allows 
us to get better fits. Roughness penalties 
(described below) are included to avoid overfitting 
Finally, the number 𝐾 of basis functions in this 
basis system is determined by the relation: 
 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑎𝑠𝑖𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 
=  𝑜𝑟𝑑𝑒𝑟 +  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 𝑘𝑛𝑜𝑡𝑠 

(7) 

 

Interior knots are the knots placed at break points 

which are not either at the start or end of the 
interval that defines the function. Here, the break 
points will be spaced 7 days apart, with an internal 
knot for each break point and polynomials of order 
6 in the case of COVID-19 data and order 5 in the 
case of Google Mobility data. 

5.2.3 Regression Splines: Smoothing by 
Regression Analysis 

After building the spline basis system, the next 
step is to determine the coefficients. For this 
purpose, the regression analysis methodology is 
used, which is based on the minimization of the 
sum of squared errors. Data fitting is defined as 
the minimization of the sum of squared errors or 
residuals 

 𝑆𝑆𝐸(𝑥) = ∑[𝑦𝑗 − 𝑥(𝑡𝑗)]
2

𝑛

𝑗

 (8) 

When the basis function expansion (4) is used to 

define function 𝑥, the minimization problem 
described above becomes 

𝑆𝑆𝐸(𝐜) = ∑ [𝑦𝑗 − ∑ 𝑐𝑘𝜙𝑘(𝑡𝑗)

𝐾

𝑘

]

2𝑛

𝑗

 

= ∑[𝑦𝑗 − 𝜙(𝑡𝑗)′𝐜]
2

𝑛

𝑗

 

(9) 

This approach is driven by the error model, which 

states that 

𝑦𝑗 = 𝑥(𝑡𝑗) + 𝜀𝑗 = 𝐜′𝜙(𝑡) + 𝜀𝑗 = 𝜙′(𝑡𝑗)𝐜 + 𝜀𝑗 (10) 

where the true errors or residuals 𝜀𝑗 are 

statistically independent and have a normal or 
Gaussian distribution with mean 0 and constant 

variance. Using matrix notation, let the n-vector 𝑦 
contain the 𝑛 values to be fit, vector 𝜀 contain the 

corresponding true residual values, and 𝑛 by 𝑘 
matrix 𝛷 contain the basis function values 

𝑐𝑘𝜙𝑘(𝑡𝑗). y is defined as follows 

 
 y =  𝛷𝐜 +  𝜀 (11) 

and the least-squares estimate of the coefficient 

vector 𝐜 is 

 𝐜̂ = (𝛷′𝛷)−1𝛷′𝐲 (12) 

The coefficient estimate 𝐜̂ in (12) is calculated y by 
multiplying the vector it by a matrix designed 
y2cMap. This matrix is often used to determine the 
variability in quantities determined by 𝐜̂, and is 
defined as follows: 
 

y2cMap = (𝛷′𝛷)−1𝛷 so that 𝐜̂ = y2cMap 𝐲 (13) 

 

For the regression splines method to estimate 
functions and smooth data to work, it is necessary 
that the number 𝐾 of basis functions be 
considerably smaller than the number of 
observations that consist of the data. One of the 
consequences of using a high number of basis 
functions is the occurrence of overfitting, which 
generates fewer smooth curves, making their 
analysis difficult, especially if it is necessary to 
analyse derivatives of these same curves. 

Data Smoothing with Roughness Penalties 

The goal of data smoothing using roughness 

penalties is to impose smoothness in a created 
function by penalizing some measure of function 
complexity. 

Choosing a Roughness Penalty 

The square of the second derivative [𝐷2𝑥(𝑡)]2 is 
called the curvature of the function 𝑥 at argument 

value 𝑡. [26] defines the function's roughness as 
its integrated squared second derivative or its total 
curvature 

 𝑃𝐸𝑁2(𝑥) = ∫[𝐷2𝑥(𝑡)]2 𝑑𝑡 (14) 

𝑃𝐸𝑁2(𝑥) provides smoothing because if the 
function is highly variable, that is, it has too much 
curvature, the square of the second derivative 
[𝐷2𝑥(𝑡)]2 is substantial. 

Having defined the measure of the roughness of 
the fitted curves, the goal is to minimize a fitting 
criterion. Whatever roughness penalty used, a 
multiple of it is added to the error sum of squares. 
Using some differential operator L to define 
roughness, the fitting criterion will be: 

𝐹(𝐜) = ∑[𝑦𝑗 − 𝑥(𝑡𝑗)]
2

+ 𝜆 ∫[𝐿𝑥(𝑡)]2𝑑𝑡

𝑗

 (15) 

where 𝑥(𝑡) = 𝐜′𝜙(𝑡). 

The smoothing parameter 𝜆 controls the 
importance placed on the roughness penalty.  

The Roughness Penalty Matrix R 

This methodology needs to be adapted to the 
roughness penalty smoothing, providing a new 
way to estimate the coefficient vector 𝐜̂. 

The roughness penalized fitting criterion (15) is 

generally defined as 
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 𝐹(𝐜) = ∑[𝑦𝑗 − 𝑥(𝑡𝑗)]
2

+ 𝜆 ∫[𝐿𝑥(𝑡)]2𝑑𝑡

𝑗

  
(16) 

By substituting the basis expansion 𝑥(𝑡) =
𝐜′𝜙(𝑡) = 𝜙′(𝑡)𝐜 into the equation above, results in 

𝐹(𝐜) = ∑[𝑦𝑗 − 𝜙′(𝑡𝑗)𝐜]
2

𝑗

 

+𝜆𝐜′ [∫ 𝐿𝜙(𝑡)𝐿𝜙′(𝑡)𝑑𝑡] 𝐜 

(17) 

The order 𝐾 roughness penalty matrix is 

 𝐑 = ∫ 𝜙(𝑡)𝜙′(𝑡)𝑑𝑡 (18) 

From this coefficient vector 𝐜̂ is defined as 

 𝐜̂ = (𝛷′𝛷 + 𝜆𝐑)−1𝛷′𝐲 (19) 

As before, the matrix y2cMap is defined. It is used 
for computing confidence regions and is obtained 
through the following expression 

 y2cMap = (𝛷′𝛷 + 𝜆𝐑)−1𝛷′ (20) 

5.3 Linear Models 

Linear modelling models the relationship between 
a response variable and one or more explanatory 
variables. In this work, the response variables are 
COVID-19 incidence curves, and explanatory 
variables are mobility data from GOOGLE or 
sociodemographic data.  

5.3.1 Functional Responses with Scalar 
Covariates: Analysis of Variance Model 

Here, variation in a functional response (COVID-
19 daily incidence curves) is decomposed into 
functional effects through the use of a scalar 
design matrix 𝐙 (the covariates, 
sociodemographic data, are scalar). 

Sociodemographic Variables Effects on 

COVID-19 Incidence 

Sociodemographic data were divided into distinct 

groups. For example, in the case of the elderly 
population, municipalities were split into 3 groups, 
in which the first group contains the municipalities 
in the lower tertile of elderly population (youngest 
municipalities) and the third group contains the 
municipalities in the upper tertile (oldest 
populations). The model fitted is the following: 

 𝑦𝑖(𝑡) = 𝛽0(𝑡) + ∑ 𝑥𝑖𝑗𝛽𝑗(𝑡) + 𝜀𝑖(𝑡)

3

𝑗=1

 (21) 

where 𝑦𝑖(𝑡) is a functional response. Using this 
technique requires to add a constraint to identify 
the effects of the three sociodemographic groups, 
which is defined as follows 

 ∑ 𝛽𝑗(𝑡) = 03
𝑗=1  for all 𝑡 (22) 

In order to implement this constraint, a new row is 

added to the original data as an additional 279th 
“observation” for which 𝑦279(𝑡) = 0. The intercept 
term 𝛽0(𝑡) is the COVID-19 mean incidence curve, 
and each of the other linear coefficients is the 
perturbation of the COVID-19 incidence mean 
required to fit a group’s mean COVID-19 incidence 
curve. The R function called here is fRegress, that 
performs linear regression. The coefficients are 

extracted and plotted, along with the predicted 
curves for each group. 

5.3.2 Functional Responses with Functional 

Covariates: Concurrent Model 

For functional covariates, the model (21) can 

expand it as follows: 

𝑦𝑖(𝑡) = 𝛽0(𝑡) + ∑ 𝑥𝑖𝑗(𝑡)𝛽𝑗(𝑡) + 𝜀𝑖(𝑡)

𝑞−1

𝑗=1

 (23) 

where 𝑥𝑖𝑗(𝑡) is a functional observation. The 

model (23) is called the concurrent model and is 
so designated because the value of 𝑦𝑖(𝑡) is related 
to the value of 𝑥𝑖𝑗(𝑡) only at the same time points 

𝑡.  𝑦𝑖(𝑡) represents the functional response, the 
COVID-19 incidence curves. 𝑥𝑖𝑗(𝑡) represents the 

functional covariate, the Google mobility curves. 

𝛽0(𝑡), the intercept function, captures the variation 
in the response that does not depend on any of 
the other covariate functions. 

Estimation for the Concurrent Model 

It is important to understand how the functional 

linear coefficients 𝛽𝑗 are estimated, using the R 

function fRegress, by simplifying the problem and 
transforming it into the resolution of a group of 
linear equations. Consider that the 𝑁 by 𝑞 
functional matrix 𝐙 contain the 𝑥𝑖𝑗 functions, and 

that the vector coefficient function 𝛽 of length 𝑞 
contain each of the regression functions. The 
concurrent model in matrix notation is then 

 𝐲(𝑡) = 𝐙(𝑡)𝛽(𝑡) + 𝜀(𝑡) (24) 

where 𝐲 is a functional vector of length 𝑁 that 
contains the response functions. Let 

 𝐫(𝑡) = 𝐲(𝑡) − 𝐙(𝑡)𝛽(𝑡) (25) 

be the corresponding 𝑁-vector of residual 
functions. The weighted regularized fitting 
criterion is 

LMSSE(𝛽) = ∫ 𝐫(𝑡)′𝐫(𝑡)𝑑𝑡 + ∑ 𝜆𝑗 ∫[𝐿𝑗𝛽𝑗(𝑡)]
2

𝑑𝑡

𝑝

𝑗

 (26) 

Consider now that the coefficient function 𝛽𝑗 have 

the expansion 

 𝛽𝑗(𝑡) = ∑ 𝑏𝑘𝑗𝜃𝑘𝑗(𝑡) = 𝜃𝑗(𝑡)′𝐛𝑗

𝐾𝑗

𝑘

 (27) 

in terms of 𝐾𝑗 basis functions 𝜃𝑘𝑗. In order to 

express (24) and (26) in matrix notation referring 
explicitly to these expansions, a composite is 
constructed. After that, (26) can be defined as: 

 

LMSSE(𝛽) = 

∫[𝐲(𝑡)′𝐲(𝑡) − 2𝐛′𝛩(𝑡)′𝐙(𝑡)′𝐲(𝑡)

+ 𝐛′𝛩(𝑡)′𝐙(𝑡)′𝐙(𝑡)𝛩(𝑡)𝐛]𝑑𝑡 + 𝐛′𝐑(𝜆)𝐛 

(28) 

By differentiating this function with respect to the 

coefficient vector 𝐛 and set it to zero, the normal 
equations penalized least squares solution for the 

composite coefficient vector 𝐛̂ is obtained:  

 
[∫ 𝛩(𝑡)′𝐙(𝑡)′𝐙(𝑡)𝛩(𝑡)𝑑𝑡 + 𝐑(𝜆)] 𝐛̂ 

= [∫ 𝛩(𝑡)′𝐙(𝑡)′𝐲(𝑡)𝑑𝑡] 
(29) 
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Confidence Intervals for Regression 
Functions 

When regression functions are fitted, confidence 
intervals are important to assess the quality of the 
estimates made. The 95% pointwise confidence 
intervals are generated using the function R 
fRegress.stderr, from fda package. The linear 
coefficients with associated confidence intervals 
can be plotted using the function plotbeta from the 
same package 

5.3.3 Functional Responses with Functional 

Covariates: General Concurrent Model 

A general version of the concurrent model is 

usually referred to as General Concurrent Model 

and has the following functional form 

𝑦𝑖(𝑡) = 𝛽0(𝑡) + ∫ 𝛽1(𝑡, 𝑠)𝑥𝑖(𝑠)𝑑𝑠 + 𝜀𝑖(𝑡)
Ω𝑡

 (30) 

Now, the linear coefficient function 𝛽1(𝑡, 𝑠) defines 

the dependence of 𝑦𝑖(𝑡) on covariate 𝑥𝑖(𝑠) at each 

time 𝑡. In this case, it is not necessary for 𝑥𝑖(𝑠) and 
𝑦𝑖(𝑡) to be defined over the same range or 

continuum. The set Ω𝑡 to which the integration in 
(30) is calculated, comprises the range of values 
of argument 𝑠 over which 𝑥𝑖 is considered to 
influence response  𝑦𝑖 at time 𝑡.  

A Functional Linear Model for the COVID-19 

Incidence and GOOGLE Mobility Data 

Consider the following functional linear model 

where 𝑥𝑖(𝑡) represent daily GOOGLE mobility 
value in day 𝑖 and 𝑦𝑖(𝑡) represent daily COVID-19 

incidence value in day 𝑖: 

 𝑦𝑖(𝑡) = 𝛽0(𝑡) + ∫ 𝛽1(𝑠, 𝑡)𝑥𝑖(𝑡)𝑑𝑠 + 𝜀𝑖(𝑡) (31) 

For any day within the period of analysis, COVID-

19 incidence is modelled as a linear combination 
of functional covariate GOOGLE mobility data in 
previous days. The regression function 𝛽 has the 
basis function expansion 

𝛽1(𝑠, 𝑡) = ∑ ∑ 𝑏𝑘𝑙𝜙𝑘(𝑠)𝜓𝑙(𝑡) =  𝜙′(𝑠)𝐁𝜓(𝑡)

𝐾2

𝑙=1

𝐾1

𝑘=1

 (32) 

where the coefficients for the expansion, 
𝑏𝑘𝑙  are in the 𝐾1 by 𝐾2 matrix 𝐁. This requires to 

define two bases for 𝛽1, as well as a basis for the 
intercept function 𝛽0. For a bivariate function such 

as 𝛽1(𝑡, 𝑠) smoothness can be imposed by 

penalizing the 𝑠 and 𝑡 directions separately: 

 
PEN𝜆𝑡,𝜆𝑠

(𝛽1(𝑡, 𝑠)) = 

𝜆1[𝐿𝑡𝛽1(𝑡, 𝑠)]2𝑑𝑠 𝑑𝑡 + 𝜆2[𝐿𝑠𝛽1(𝑡, 𝑠)]2𝑑𝑠 𝑑𝑡 
(33) 

where linear differential operator 𝐿𝑠 only involves 
derivatives with respect to 𝑠 and 𝐿𝑡 only involves 

derivatives with respect to 𝑡. A B-spline basis is 
used to define functional parameter objects for 𝛽0 

, 𝛽1(⋅, 𝑡) and 𝛽1(𝑠,⋅) . The coefficients are 
smoothed, but the smoothing parameter values 
vary. These three functional parameter objects are 
placed into a list object to be supplied to function 

linmod, a function that returns the coefficients to 
be analysed.  
6. RESULTS AND DISCUSSION 

6.1 Functional Responses with Functional 
Covariates: Concurrent Model 

The relationship between COVID-19 incidence 
rate acceleration curves and the velocity of 
mobility variation was explored using a concurrent 
model.  Different time lags of analysis were 
explored allowing to estimate the time interval that 
elapses between a certain behaviour of the 
mobility curves and a (possibly) similar behaviour 
in the incidence curves. A lag of 15 to 16 days 
between the curves of both variables showed 
stronger associations and was set for analysis of 
results (the exact number of days lagged, varied 
according to the mobility class analysed). In 1st 
and 2nd wave none of mobility classes show a 
significant relationship with COVID-19 incidence 
curves. This may be due to COVID-19 data only 
starting at the end of March and the 
underreporting of positive cases. In fact linear 
coefficient functions in these two first waves show 
erratic curves with wide 95% point-wise 
confidence intervals that include 0 value.  

In some mobility classes, like Grocery (15-day 
delay), Parks (16-day delay), and Stations (15-day 
delay), coefficients functions are more stable and 
positive, but still not significative, as the 
confidence intervals of these curves include zero 
value. 

In 3rd wave, significant associations were found 
with some mobility classes. The most significant 
result is found in the Residential class (16-day 
delay) (Figure 1). where linear coefficient function 
is always positive and the confidence interval fails 
to include zero.  

 

 

Figure 1  - Linear Coefficient Function for the Velocity of Mobility 
Variation with 95% pointwise confidence intervals (Residential 
and Retail Class, 3rd wave, 16-day lag) 

Under the same concurrent model, a significant 

linear coefficient function was also identified in the 
Retail class (15-day delay) but in this case, 
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confidence intervals include zero in one section 
(results not shown here). 

The Workplace mobility class showed no 

relationship with COVID-19 incidence evolution. 

It is noteworthy that outside the 15-16 days range, 

the results were not significant or erratic, 
strengthening the idea that the ideal lag (for which 
mobility influences incidence) may be about 15 
days. A detailed analysis of the results obtained 
for each of the mobility classes is performed in the 
next section, since results were in line with this 
section. 

6.2 Functional Responses with Functional 

Covariates: General Concurrent Model 

This method is similar to the previous and allows 

to evaluate possible associations without having 
to resort to lagged curves and relates the value of 
the response variable to all the values of the 
explanatory variable. Suppose that the effect of 
mobility on incidence has a lag of about 15 days 
(a value that is referred in some literature, and that 
is also found in results of this work).  

Based on this assumption it could be reasonable 

to expect that a graph representing this signal with 
15-day lag would show a diagonal region, 
between the origin of the graph and the upper right 
corner, in which the association was positive, and 
shifted to the left about 15 days. However, results 
obtained were not that linear and this is not 
surprising as mobility and COVID-19 incidence 
variations are unpredictable as they reflect the 
complex situation of populations responding 
differently to external stimuli, under a pandemic 
situation.  

Nevertheless, using General Concurrent Models it 

was possible to detect pattern or regions of 
positive associations. Despite not being a perfect 
diagonal, these regions show a lag between the 
velocity of mobility variation curves and the 
respective effect on the incidence rate 
acceleration curves.  

 

 

Figure 2 - Bivariate Linear Coefficient Function for the 
Velocity of Mobility Variation (Residential Class, 3rd wave). 
The dashed line illustrates the diagonal path with 15-day lag 
showing prevalence of positive linear coefficient functions.  

Once again, only results in 3rd wave were 
significant so only results for the 3rd wave will be 
presented and commented below. 

It was in Residential Mobility that the strongest 
signals were found. The 3rd wave graph (Figure 2) 
shows that the linear coefficient is positive along 
the diagonal lagged by about 15 days (the 
diagonal starts at (0,15) and ends at (35,50)). 
Retail and Stations mobility classes also showed 
relationship with incidence, despite the signals 
being weaker. Retail mobility class is related to a 
type of mobility aimed at obtaining non-essential 
goods (for example, going to shopping centres). 
Therefore, it is expected that the use of these 
spaces varied significantly according to the 
relief/increase of restrictions and may reflect a 
more relaxed/careful behaviour of the population. 
As the 3rd wave is related to Christmas, this strong 
initial signal may be related to the large 
agglomerations that occur at this time in 
commercial surfaces. This behaviour in retail 
mobility may therefore influence the spread of 
COVID-19. The signal for the Stations mobility 
class in the 3rd wave, may show the influence that 
the use of public transport has on the spread of 
the virus. Thus, the strongest signal in the 3rd wave 
could be related to the Christmas and New Year’s 
Eve season (fewer people working) and the 
application of mandatory teleworking and 
lockdown during the 3rd wave. 

Also, for the other mobility classes, such as 

Grocery or Parks, positive linear bivariate 
coefficients functions occurred but only appear in 
some regions along the “diagonal” (results not 
shown here). One hypothesis for results obtained 
in these classes is that mobility of the population 
in these classes is less sensitive to variations in 
incidence (compared to other classes). Grocery 
class is related with mobility in supermarkets and 
pharmacies. In these places populations obtain 
essential goods, and have to comply with strict 
protection measures, such as mask usage. On 
other hand, Parks mobility class are usually 
associated with good weather. As the 3rd wave 
corresponds to a winter period, parks mobility is 
lower so it is not expected that restriction 
measures would cause a significant variation in 
the use of these spaces. Furthermore, parks are 
outdoor places, where virus transmission is much 
lower, which may explain the weakening of the 
signal in the analysed waves.  

Results of General Concurrent Model show that 
residential mobility, a sensitive variable to 
lockdown measures, has a strong relationship with 
the COVID-19 incidence rate acceleration (with a 
lag of around 15 days), compared to all other 
mobility classes. The 3rd wave coincided with the 
Christmas and New Year celebrations, with a 
large movement of people away from their homes 
at Christmas, and the application of lockdown 
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measures to combat these movements in the New 
Year’s Eve. Thus, this might have influenced the 
behaviour of the incidence curves. Also, the 2nd 
wave is related to a period of school activity and 
greater relaxation of measures, reducing 
residential mobility and increasing interaction 
outside households, which may also influence the 
spread of the virus 

Finally, in the Workplace class, it was found a 

positive linear coefficient in the 3rd wave in the 
diagonal, but is a very weak signal. Fluctuations in 
the frequency of workplaces during the pandemic 
period did not have a major influence on the 
spread of the virus. The already widespread use 
of telework, and the improvements in safety 
conditions may have contributed to this type of 
mobility having no impact on the incidence rate 
acceleration curves. 

6.3 Functional Responses with Scalar 

Covariates: Analysis of Variance Model 

The Analysis of Variance Model was applied to 

model the relationship between COVID-19 daily 
incidence rates and sociodemographic potential 
risk factors, between October 24, 2020 and 
February 6, 2020 (only the 1st and 2nd waves were 
analysed). 

The objective of this analysis was to understand 

the impact of different sociodemographic classes 
on the shape of the incidence curves. As a 
previous step, it was required to transform the 
values (quantitative data) of sociodemographic 
variables into classes (categorical data). The 
models were fitted using dummy variables for 
different categories of each variable and the 
regression coefficients for each category and 
variable were estimated as illustrated in Figure 3.  

 

 

Figure 3 - Linear Coefficient Functions estimated for 
predicting COVID-19 Incidence from Population 
Density 

For each variable, municipalities are divided into 

classes or categories, and each class 
corresponds to a plot, whose curves represent the 
perturbation of the COVID-19 incidence mean 
required to fit the class mean COVID-19 incidence 
curve. This mean that in the period when a curve 
is positive/negative, the municipalities in the same 
class had a COVID-19 incidence mean 
higher/lower than the total average. 

In Figure 3, the first plot (upper left corner) 
corresponds to the COVID-19 mean incidence 

curve in the period analysed, and the other three 
correspond to the impacts of municipalities with 
lower population density (Class 1), average 
density (Class 2) and higher density (Class 3). It is 
possible to identify from the plots that Class 1 had 
an higher impact on COVID-19 curves during the 
3rd wave and the municipalities with higher 
population density (Class 3) were the most 
affected in the 2nd wave.  

This analysis was performed with all the other 
variables. However, the plots are not shown here 
for sake of simplicity. Elderly population (EP) 
showed that municipalities with lower percentage 
of EP (Class 1, younger municipalities) were the 
most affected in the 2nd wave and those with 
higher percentage of EP (Class 3) were the most 
affected in the 3rd wave. As expected the opposite 
trends occurred in the analysis of Young 
Population (YP) as municipalities with lower 
percentage of YP (older municipalities) were the 
most affected in the 3rd wave and municipalities 
with higher percentage of YP were most affected 
in the 2nd wave. At this stage it is important to 
pinpoint that the linear coefficients curve shapes 
of PD, YP and EP can be explained in light of the 
behaviour of the population in the 3rd wave. During 
the month of December many moved from urban 
areas to non-urban areas and inland, due to 
Christmas. The municipalities in these areas have 
high percentage of EP and low PD. These 
movements, that preceded the 3rd wave, may 
explain the exponential increase in COVID-19 
cases. 

Turning now to schools density (SD), the results 
show us a behaviour identical to PD. Here, Class 
1 corresponds to municipalities with the lowest 
SD, and Class 3 to the ones with the highest SD. 
This show that the behaviour of the incidence 
curves may also be related to school activity, as 
the return to in-person classes before the 2nd may 
have contributed to the spread of COVID-19. 

In the case of the Deprivation Index (DI) results 
provided a counter intuitive result as the group of 
municipalities classified as having a lower degree 
of deprivation had an incidence mean higher than 
the country average. Because DI is a variable 
composed of many variables, it may be subject to 
higher variability, weakening the signal. In 
addition, the DI is based on the 2011 Census, so 
the data may be outdated. 

Results concerning the Guaranteed Minimum 

Income (GMI) variable show that municipalities 
with higher proportion GMI in population (poorer 
on average) had a higher COVID-19 incidence 
mean than the country average in the 2nd wave 
and part of the 3rd wave. These results are in line 
with literature, as the lack of financial resources 
hinders the population's access to housing, health 
care, education, etc., making it more vulnerable to 
COVID-19. 
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When analysing the coefficients for the 
percentage of Working Population per activity 
sector, municipalities were classified into 
municipalities where primary activities, like 
agriculture or fishing are predominant (Class 1), 
secondary activities like industry are predominant 
(SS, Class 2) and services like banking or 
education are predominant (TS, Class 3). The 
results show that the Class 2 municipalities 
showed an above-average behaviour over the 2nd 
and 3rd wave, and in Class 1 municipalities, the 
behaviour of the incidence curves was below 
average. The SS is the activity sector that involves 
manufacturing, essential activity that involve work 
in closed spaces, contributing to the spread of 
COVID-19. The PS includes many activities that 
are not carried out in closed spaces. The TS, the 
services sector, does not require as much 
proximity as the SS, also through the use of 
telework. The latter has very low linear coefficient 
values and so the impact of this sector on the 
spread of the virus will be small. 
 

7. CONCLUSIONS AND FUTURE WORK 

The objective of this thesis was to use FDA to 
analyse and quantify the association of COVID-19 
incidence data with Google mobility and 
Sociodemographic data to understand the impact 
that mobility and sociodemographic conditions 
have on the spread of COVID-19. Despite several 
limitations of data related with accuracy and level 
of aggregation, some relevant trends in functional 
data curve shapes could be identified. The results 
show that measures must be taken to protect the 
most vulnerable and disadvantaged populations. 
Also, they strengthened the idea that the ideal lag 
for which mobility has some effect on the 
incidence is about 15 days. Additionally, the 
results reinforce the effectiveness of restrictive 
measures such as lockdown. The variation of 
different mobility classes can be used (residential, 
retail and stations) to try to predict the spread of 
the virus. Some results suggest that sudden 
changes in mobility (mass movements of the 
population, and mandatory lockdown) have 
greater association with the evolution of the 
incidence of COVID-19. This may mean that there 
is a threshold in mobility behaviour, from which 
this association becomes stronger, and that can 
help to contain the spread of COVID-19. 

The FDA is a very broad area with a lot of potential 

yet to be explored. Other approaches can be tried, 
for example, using FPCA and Functional Principal 
Differential Analysis. The methodology of this 
work can be applied in future waves of COVID-19 
(or future pandemics). It may be interesting to 
study the association of other variables with the 
COVID-19 incidence, including other 
sociodemographic variables, meteorological data, 
other mobility data, or vaccination rates. Another 
suggestion would be to apply the methodology of 

this work using COVID-19 mortality data. This 
strategy may be relevant in the sociodemographic 
field, due to the important role they typically play 
in the population's health outcomes. 
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